Category: Kardiyovasküler Mekanik

Surgical Planning Laboratory

MEDIPOL UNIVERSITY

UCCVS 2022 Focus Valve Scholarship

I am very proud to have participated in 18th International Congress of Update Cardiology & Cardiovascular #Surgery with two research presentations, and ✨ to be awarded with FocusValve Scholarship

Best regards to #UCCVS committee members and our esteemed Prof. Öztekin Oto.

Engineering Solutions to Medical Problems

We met at the ‘Engineering Solutions to Medical Problems’ panel at Yıldız Technical University. Many thanks to ~Yıldız Technical University IEEE Engineering in Medicine and Biology Society~ for this well-planned organization.

EVBio

A team I am honored to be involved in EVBio!
EVBio is a digital think tank formed by scientists from all disciplines related to vascular medicine, from molecular biology to scientific computing. Our mission is to imagine the future through disruptive basic and translational research. Our team works tirelessly to formulate one universal coherent theory for vascular disease and support all global efforts towards its conception and validation.

Our membership will increase soon!

Cardiovascular Engineering in Istanbul

We talked about cardiovascular engineering and its future.   I was honored to be a  guest in Future Research Institute. Many thnaks to Coskun Dolanbay.

I am proud to have a place in this study

I am proud to have a contribution in this study.

Women in STEM

Kevser Banu

To commemorate International Women’s Day (8 March 2020), 3DMedNet has put together our first ‘Ask the experts’ feature in partnership with the global organization, Women in 3D Printing.  Thanks to Georgi for inviting me to the conversation. Check the link for the full interview.

Pediatric Cardiac Imaging Session

SickKids

Liquid State Physics in Turkey

22. Liquid State Symposium (22. Sıvı Hal Senpozyumu) took place on 7th December 2018 in Piri Reis University.
It was very proud to be together with the physicist academics I knew and admired since my undergraduate years.
I find myself lucky to see the Prof. Zehra Akdeniz that I have always admired and exemplified. I could finally meet Prof. Nihat Berker who is not only a famous physicist but also an intellectual on comparative literature readings.

Thanks to Dr. Ozan Sarıyer and Dr. Gulsen Evingur for organizing this meeting.

Prof Pekkan presented biological flow researches of his lab, and I presented a sample case of a pediatric aortic blood flow comparison study which is done with the great help of Dr. Ece Salihoglu.

Virtual Physiological Human Conference 2018 / Zaragoza

Conference Web Link

8th World Congress of Biomechanics / Pekkan Lab

More

‘Lauded’


Cardiovascular

The 5th ‘The Utrecht Sessions’ for Congenital Heart Disease

The Utrecht Sessions for Congenital Heart Disease was held at the University Medical Center Utrecht on 8-10 February. It was one of the best organized meetings I’ve ever attended.

I had the chance to listen to the work of the most successful pediatric cardiologists and surgeons in the field and to learn a lot about TGA.

I would like to thank Heynric Grotenhuis for the courtesy and help in the pre-seminar correspondence. And I would like to thank Gregor Krings for his support to share my work and to inspirational favour to interdisciplinary research.

I am delighted to have the chance to meet Gregor Krings, Heynric Grotenhuis, Tjark Ebels, Mario Carminati, Tara Bharucha , Petru Liuba, Virpe Puska and Ghadeera Almansoori.

HORST KIECHLE

Source

3D Printed Aorta

A pediatric aorta model reconstructed from the 3D CT images.

ISCOMS – Faculty of Medical Sciences- Groningen University

Interactive Surgical Operation

Mimics Innovation Course 2017 – Belgium

Materialise provided a Mimics Innovation Course on Soft Tissue.

This training was very informative and well-presented with all soft tissue samples, text book and datasets.

I used 3-Matic for the first time, and got confidence about many things about design and meshing. We could also discuss our own projects and could ask possible options of Mimics Innovation Suite.

Learning about the news about scripting possibilities to automate the workflow, and ADam (Materialise Anatomical Data Mining) for shape optimisation was encouraging.

Thank you for sharing your knowledge with us, Karen de Leener and Inés da Silva.

Thank you for the great help of Job der Kinderen.

3D Intracardiac Models for Surgical Planning

In multidisciplinary areas, it is very important to be able to meet with the team who can work in harmony.

For his work on 3D intracardiac models on surgical planning,  Thanks to cardiovascular surgeon Dr. Okan Yildiz, we have been informed about and contributed to many pediatric cases and treatments since 2016.

3D Heart_IMAEH

Me in FU Fluids Lab and The Oxygenator from IMAEH (2013)

Anatomical Modeling & 3D Printing Meeting with 4C Medikal

PRINT THYSELF

This sort of procedure is becoming more and more common among doctors and medical researchers. Almost every day, I receive an e-mail from my hospital?s press office describing how yet another colleague is using a 3-D printer to create an intricately realistic surgical model?of a particular patient?s mitral valve, or finger, or optic nerve?to practice on before the actual operation. Surgeons are implanting 3-D-printed stents, prosthetics, and replacement segments of human skull. The exponents of 3-D printing contend that the technology is making manufacturing more democratic; the things we are choosing to print are becoming ever more personal and intimate. This appears to be even more true in medicine: increasingly, what we are printing is ourselves.

Source: Newyorker

Trando Med

Trando Med will attend MEDICA 2017 in the Dusseldorf Germany from 13-16 November 2017. The booth is Hall 13 Booth F 9-05

IFG26 – Statistical Physics Days

26th Statistical Physics Days were held in İzmir Institute of Technology.

During the program organization, Prof. Nejat Bulut’s dedication and careful attention to every detail was so amazing that it will be a very nice experience in my mind.

It was an honor to be among the successful physicist academicians and to listen to their work. It was also my chance that I had the opportunity to talk about my own practice and find the opportunity to discuss it with very precious professors.

K. Banu Kose

MY TINY DIY HEART

Back to childhood:  I spend my time with play-dough ;)

Link

Velocity Contours in Iso-Surfaces for The Re-Stenosed Pulmonary Artery

The entrance lenght parts of the inlet and outlet sections are only used for calculation process.

Carol Malnati

“- I wanted to be someone that encouraged young women to get involved in math, science, and engineering.”

Today, she’s doing just that.

As a product development engineer in the Medtronic cardiovascular division, Carol has been doing what she loves for more than 25 years. She provided critical technical expertise for the company’s first implantable cardioverter defibrillator and continues to collaborate with engineering teams and physicians to find new ways of doing things.

But on top of her day job, she has taken on another commitment – overseeing the Women in Science and Engineering (WISE) Initiative at the company.

Beginning in the spring of 2017, Medtronic introduced another opportunity that taps into an often overlooked talent pool.  Careers 2.0 is a “returnship” program designed to provide paid internships for female engineers looking to get back into STEM-related careers. Research suggests close to 25 percent of women in engineering careers leave the industry by age 30, citing work culture or family commitments.

“This is a way to bring these talented women back into our technical and managerial ranks,” says Carol. “We are very excited about providing this amazing pool of talent an opportunity at Medtronic.”

“Overall, I want to inspire women,” says Carol. “Whatever your passion is; clean air, fighting hunger, or improving healthcare. Behind the biggest challenges of humanity, there’s an engineer working to find a solution.”

Source

A 3D Patient-Specific Aorta Model which is Segmented by The Visualisation Toolkit

Starfish Medical – VivitroLabs – ProtomedLabs – Marseille – France


Ece Tutsak (Left) – Banu Köse(Middle) – Vincent Garitey(Right)

Heart Flow

Using data from a standard CT scan, the non-invasive HeartFlow Analysis creates a personalized 3D model of the coronary arteries and analyzes the impact that blockages have on blood flow. See the website: http://www.heartflow.com/

Wilhelmina Children’s Hospital / Utrecht Sessions – The Netherlands

3 daags kindercardiologie TGA symposium

UMC Utrecht

Clinical Engineering Lecture in Beykent University

Clinical Engineering

Lecture

Beykent University Biomedical Engineering Event

I would like to thank the students of the biomedical department of Beykent University for inviting me to their event. It was nice to meet the curious and excited students.

Beykent Üniversitesi

Wall Shear Stress

Pediatric re-stenosed pulmonary artery model is depicted with marked points of unstable wall shear stress (WSS) which brings about the thinner layers by platelets. This means the loss of smooth muscle cells and remodeling risk. Sudden bends and tapering in the geometry induces high velocity gradients and high wall shear stress.

Surgical Planning and 3D Printed Hearts

Alistair Phillips, MD, who is the Co-Chair for the American College of Cardiology, Surgeons Section tells about some of the impacts he has personally experienced using 3D printing in surgical settings as his participation in the 3DHEART program:

“The clinical trial is particularly exciting as it targets specific cases in which understanding of the anatomy will greatly enhance the surgical approach. A 3D printed replica of a patient’s heart will be created as part of the inclusion criteria to be in the study.Using 3D printing gave a better understanding of the Hybrid procedure, and allowed us to perform pulmonary valve replacement with a minimally invasive approach avoiding conventional method that required open-heart surgery. After coming to Cedars-Sinai we refined the pre-ventricular approach by utilizing a 3D printed models of patients’ hearts. We were able to simulate the implant into the right ventricular outflow tract.

Every surgeon is different. The education, experience, aptitudes, and attitude we bring to each equally nuanced and varied patient span an almost limitless spectrum and inform how we may utilize 3D printing for the benefit of our patients. The elegance of 3D printing is that it can create the individualized tools spanning this spectrum.

That said, however, what is not negotiable is the veracity of the models that we are receiving. Various materials and their corresponding colouring or rigidity may serve different functions in the hands of different surgeons, but ultimately we must have the utmost confidence in the fidelity of the models we are utilizing for pre-surgical planning. The more realistic the model is both in anatomical and textural preciousness will greatly enhance the application.

In all honesty, I would advise each hospital to start by really understanding the value proposition 3D printing offers across all specialities and, the culture of their institution. The best way to get answers to these very nebulous, complicated, nuanced directives is by retaining an outside vendor to provide as much of the services as possible, from the proverbial soup to nuts.

The excitement around the 3DHEART clinical trial is so great because it is the first organized, large-scale attempt to collect evidence of the efficacies of 3D printing in the practice of medicine and delivery of healthcare, not only in terms of optimized patient outcomes but also with respect to lower costs. If we can get reimbursement for 3D models, it is without a doubt a game-changer in terms of the practice of medicine, and a life-changer for many of our patients.”

Source

Flow Testing Dynamic Systems with 3D Printed Patient-Specific Heart Models

Without the 3D printed models, we wouldn’t have been able to come up with a way to do the procedure in advance.

—C. HUIE LIN, M.D
Adult congenital and interventional cardiologist.

3D Print Bureau of Texas has partnered with physicians at Houston Methodist Hospital to create cardiac models for applications such as assessing the size and attachment site of a right atrial malignancy. Accurate physical replications of patient anatomy can even undergo testing in a dynamic system such as replicating the severity of aortic stenosis using flow testing.

3D Print Bureau of Texas also worked with Houston Methodist DeBakey Heart and Vascular Center on a complex case involving a young patient born with a wide-open leaking pulmonary valve. The patient could not take blood transfusions and have been turned down by two medical centres concerned she would not make it through surgery.

With a 3D printed model of the patient’s heart, Lin devised a plan that required very little blood loss, which resulted in a successful operation for the little patient.

Source

NAFEMS European Conference on Multiphysics Simulation 2018

11th & 12th October 2018
Budapest, Hungary

Technology is changing faster than ever. Global megatrends – such as digitalization, resource scarcity, and the need for renewable energy – drive the demand for innovation and efficient product development. In today’s world of almost limitless computing power, numerical simulations need to be both accessible and accurate in order to enable innovation.

NAFEMS are pleased to announce the fourth European Conference on Multiphysics simulations in October 2018. It will cover the use of Multiphysics simulations in industry.

Source

Handmade Glass Anatomical Models by Farlow’s Scientific Glassblowing

Gary Farlow can make art out of arteries. He and his team of 10 at Farlow?s Scientific Glassblowing are able to transform the body?s vasculature?and nearly all of its other parts?into an ornate borosilicate glass sculpture, from the heart?s ventricles to the brain?s circle of Willis. ?We do almost every part of the body,? Farlow says. ?It can take a pretty artistic mind to make some of these things.? With the help of cardiologists, the team creates custom see-through systems for science and medical training.

Their anatomically correct models can be designed to simulate blood flow, teach placement of catheters and angioplasty devices, or simply test or demo new surgical gizmos. Individual arteries, veins, and capillaries are shaped and fused together, one at a time. Ground-glass joints are added at the exposed ends so a head, say, can be connected to the carotid arteries should customers want to expand their model. A full-body setup could cost $25,000, so don?t get any bright ideas about using one as a brandy decanter.

Artifical Artery 1955